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Abstract
Different properties of Mg-Cu alloys have been studied by using Monte Carlo (MC) simulation

and embedded-atom method (EAM) interatomic potentials. The interatomic potentials were derived by
fitting to properties of crystalline phases. The pair distribution function g(r) has been calculated showing
that a crystal, an amorphous solid, a supercooled liquid, or a liquid can be produced. The RSD (root mean
square displacements) have been calculated for the same temperatures and compositions. The Radial
Distribution Function (RDF) let us carried out structural analyses. We have been able to reproduce the
experimentally measured structural properties of the liquid with potentials fitted to the solid state. The
chemical potential is obtained from calculation and thermodynamic properties are derived. Examples
studied are the free energy of mixing for liquid and solid alloys. The integral excess free energy, the
thermodynamic activities and the activity factors of Mg and Cu were calculated. A good agreement with
experimental results is obtained for the theoretical calculations.

Resumen
Diferentes propiedades de aleaciones de Mg-Cu se estudiaron usando simulación de Monte Carlo

y el método del átomo implantado de potenciales interatómicos(EAM). Los potenciales interatómicos
fueron derivados por ajuste a las propiedades de fases cristalinas. La función de distribución de pares g(r)
calculada indicó que un cristal, un sólido amorfo, un líquido sobreenfriado o un líquido pueden ser
producidos. The RSD ha sido calculado para las mismas temperaturas y composiciones. La función de
distribución radial (RDF) permitió realizar análisis estructurales. Se reprodujeron las propiedades
estructurales medidas experimentalmente del líquido con potenciales ajustados al estado sólido. El
potencial químico se obtuvo por cálculo y se derivaron propiedades termodinámicas. Se estudiaron la
energía libre de mezclado para líquidos y aleaciones sólidas. Se calcularon el exceso de energía libre
integral, las actividades termodinámicas y los factores de actividad de Mg y Cu. Se obtuvo una buena
concordancia entre los resultados experimentales y los cálculos teóricos.
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Introduction
Knowledge on structural and thermodynamic properties of alloys is of interest for

practical applications. There are previous calculations on Mg-Cu system. A description
of different CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry)
method calculations has been summarised by C. A. Coughanow et al. [1]. Different
models have been used previously to calculate the enthalpy of mixing of liquid Cu-Mg
alloys, Agrawal [2] et al. consider an statistical thermodynamic approach, Sommer [3] et
al. used two different models, an associated one and the Miedema model [4]. The goal of
this theoretical study of Mg-Cu alloys is the calculation of structural and thermodynamic
properties of liquid and solid phases using Monte Carlo (MC) simulation and embedded-
atom method (EAM) interatomic potentials which is a modern potential regularly used
for metals.

In CALPHAD methods an optimized set of thermodynamic functions are
obtained to calculate the Mg-Cu phase diagram and thermodynamic properties, enthalpy
of mixing, Gibbs energies of the liquid and the solid phases. One of us made a theoretical
calculation of the amorphous alloy range of the Mg-Cu system using the Miedema model
[5]. In this work the authors reproduce the amorphization range, the instability of the
solid solution from pure Mg up to near the pure Cu end, the small solid solubility range
in fcc Cu, and the role played by the intermetallic compounds on defining the
amorphization range. Most of these works show a good fit to experimental data.
Atomistic calculations have been reported on Mg-Cu metallic glasses [6,7]. Atomistic
methods provide a link between the atomistic scale and the macroscopic mechanical,
thermodynamic and chemical behaviour of matter. The use of these methods for metallic
alloys is a real challenge and is highly desirable to try them and prove their ability to
reproduce and predict thermodynamic behaviour. Great efforts have been, and still are,
dedicated to the development and improvement of potential energy functions. This work
shows good results for structural and thermodynamic properties.

The EAM, a semiempirical interatomic-potential method, has been extensively
applied in the study of crystalline metals and alloys [8]. A very good agreement between
EAM simulations and experimental measurements has been found in a previous study of
liquids of fcc transition metals that was performed by Foiles [9]. Nowadays the EAM has
been widely used to study the structural, thermodynamic and dynamic properties of
elemental metallic liquids and glasses.

The existing experimental results make it desirable to include new theoretical
evaluations that may reproduce more satisfactorily their behaviour. This is what we will
tackle in this work. A number of authors have measured thermodynamic properties of
solid and liquid Mg-Cu alloys experimentally and the results have been critically
assessed by Hultgren [10]. Subsequently Juneja et al. [11] studied the thermodynamic
behaviour of liquid Mg-Cu alloys and compounds by a modified form of the boiling-
temperature method, which was not previously used for the studies of these alloys.
Experimental studies by Lukens and Wagner [12] analyse the structure of Mg-Cu liquid
alloys. Sommer et al. [13] presented thermal properties of Mg-Cu glasses and
Mg85.5Cu14.5 liquid and crystalline alloy.

The phase equilibrium diagram has been critically evaluated by Nayeb-Hashemi
et al. [14]. They described that the equilibrium phases of the Mg-Cu system are the
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liquid, the Mg terminal solid solution (hcp) which has a restricted solubility of Cu in Mg;
and the terminal (fcc) solid solution of Mg in Cu with a maximum solid solubility of
6.93% at Mg. Two intermetallic compounds exist, the orthorhombic stoichiometric
Mg2Cu and the non-stoichiometric MgCu2 fcc, C-15 type structure. Both of them melt
congruently at 568 °C and 797 °C, respectively. Mg-rich metallic glasses were obtained
by Sommer et al. [13] and Kempen et al. [15] by rapid quenching from the liquid state.
Glass formation occurs from 9 to 42 at. % Cu and the region of complete glass formation
-12 to 22 at. % Cu- appears around the deep eutectic (14.5 at. % Cu and 485 °C) L ↔
Mg2Cu + (Mg). In our simulation we examine some of the equilibrium phases, the liquid
at 827°C (1100 K), Mg-rich hcp and Cu-rich fcc solid solutions and the two existing
intermetallic compounds Mg2Cu and MgCu2.

The thermodynamic and structural properties are studied with MC simulations at
constant pressure and temperature. Different temperature calculations were performed.
The different arrangement of atoms is represented with the exchange of atoms located in
crystallographically unequivalent positions. The environment of each atom and the local
structure and movements are then taken into account. The structural movement that
accompanies any exchange of an atom reduces considerably the energy associated with
any such interchange. This approach was previously used in the study of rhodium-
palladium solid solution [16]. We have checked the convergence of the calculated
thermodynamic properties by performing MC simulations using a box-size of 256, 512,
864 and 2048 atoms. The interatomic potentials were derived by fitting to properties of
crystalline phases. The experimental data used in the fitting are the elastic constants,
sublimation energy and lattice parameter. One of our goals is to study the accuracy of
results for liquids when using potentials derived from solid state properties.

Method and potentials are described in the next section. Calculated properties are
presented and compared with experimental available data in the Results and Discussion
Section. At the end, our conclusions are summarised.

Method
A. Interatomic Potentials

In the EAM [17-19] the lattice static energy per unit cell can be written as:

                   ( )∑∑∑ +=Φ
i j

ijij
i

ii rF φρ '
2

1
)(stat                           (1)

Primes on summations in this and subsequent equations indicate that terms with
0=ijr  are excluded. ( )iiF ρ  is negative and represents the energy of “embedding” atom i

in the electron density iρ  created by all other atoms in the crystal, and ( )ijij rφ  is the core-

core repulsion between atoms i  and j , assumed to depend only on the type of the atoms

and the distance between them. The electron density iρ  is assumed to be the sum of the

electronic densities of all other atoms at the nucleus of atom i :

                                                  ( )∑=
j

ijji rf'ρ                                                      (2)
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The electron density created by atom j  at a distance ijr , ( )ijj rf , is assumed to be

isotropic about j .
The computational cost is not much higher than that when using only two body

potentials. Although angular contributions are not included explicitly, account is taken of
many body contributions to the crystal energy through the embedding function.

In this work we represent the electronic densities, the two body potentials and the
embedding function with simple analytical functions. For the electronic densities we use
exponential functions:

                                     ( )jijjj /rDrf ζ−= exp     )(                                                         (3)

with different parameters Dj and ζj for each metal (j = Cu, Mg). The embedding energy
(equation 1) is given by

                                               jjjj CF ρρ  -    )( =                                                          (4)

with different parameters Cj again for Cu and Mg. The repulsive potential in equation (1)
is also given a simple form,

                                             ( )ijijijij /rAr σ−=φ exp     )(                                                   (5)

where ijA  and ijσ  are different for each type of interaction (Cu-Cu, Mg-Mg, Cu-Mg). A

cutoff of 6 Å was used for both electron densities and repulsive potentials.
For pure Cu five parameters need to be determined: CuD , Cuζ , CuCuA , CuCuσ , and

CCu . Because the energy of any given configuration depends only on CuCu DC  and not

on the separate values of CuC  and CuD , only four of these parameters can be determined

by fitting to properties of the pure metals. Without loss of generality we take CCu = 1. The
remaining four parameters are fitted so as to reproduce the experimental lattice
parameter, sublimation energy [20] and elastic constants [21] of pure Cu. In table 1 we
show the experimental data used in the fitting together with the values obtained from the
present model. With this simple model it is not possible to reproduce the experimental
values exactly. The same procedure was followed for Mg with experimental data taken
from Kittel [20] and Simmons et al. [22]. Although the parameters CuC  and MgC  can be

taken as 1 for the pure metals, the energies of Cu-Mg alloys depend on their relative
values. Here, we take 1Cu =C  while the parameter MgC , together with the cross

interaction parameters CuMgA  and CuMgσ  are fitted to reproduce the experimental values

[23] of the lattice parameters a and the formation enthalpy of CuMg2. Experimental and
calculated values are given in Table 1. In Table 2 we collect together the parameters of
the present potential. The fitting was performed using the computer code EAMLD [24].



Mg-Cu Alloys: A Monte Carlo Simulation Of…
Table1. Experimental data used to determine the model parameters and corresponding

calculated values.

i/j ijA  (eV) ijσ  (Å) iD iζ  (Å) iC  (eV)

Cu 7167.56 0.241444 195.462 0.527618 1

Mg 13011.7 0.269318 92.7623 0.509632 -1.38223

Cu/Mg 9657.24 0.254620

Table 2. Parameters of the potential model used in this work.

Metal T(K) r0 (10-10 m) rm (10-10

m)
g(rm ) a* rm/a r0/rm

Cu (calc) 1423 1.92194 2.48304 2.70751 2.39518 1.037 0.774

experiment 2.06 2.50 2.76 2.37 1.05 1.83

Mg 953 2.38444 3.06712 2.49366 3.11749 0.98 0.78

experiment 2.52 3.10 2.46 2.95 1.05 0.81

B. Monte Carlo
Our starting point was a MC simulation at constant temperature and pressure.

Vibrational effects are taken into account by allowing random moves of randomly
selected atoms. Both atomic coordinates and cell dimensions are allowed to vary during
the simulation. During one step of the MC simulation an atomic coordinate or a lattice
parameter is chosen at random and altered by a random amount. To determine whether
the change is accepted or rejected, the usual Metropolis algorithm [25] is applied. The
maximum changes in the atomic displacement and the lattice parameter are governed by
the variables rmax and vmax respectively. The magnitudes of these parameters are adjusted
automatically during the equilibration part of the simulation to maintain an
acceptance/rejection ratio of approximately 0.3.

In the MC calculations each step thus comprises either an attempted atom
movement or a change of size of the simulation box. The MC calculations thus almost
always sample only one atom arrangement, the initial configuration which is chosen at
random. In order to sample different configurations in an efficient way we have carried
out Monte Carlo exchange simulation (MCX). Details of this technique were already
described [26]. Detailed balance is achieved, at any stage of the simulations by deciding
whether to carry out an atom displacement, a cell distortion or an exchange, at random
with a probability of N: 1 : 1, respectively, where N is the number of atoms in the
simulation box. Most of our simulations were carried out using a unit cell with 256 atoms
and 2 × 107 steps.
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To speed up the sampling of configuration we have applied the biased sampling
technique [27]. In our exchange bias MCX, instead of considering a single trial
exchange, a set of trial exchanges is picked at random, and one of this set is chosen [28].

Results and Discussion
A. Pure Cu and Mg

Figure 1: Enthalpy of pure Cu at temperature T (K) relative to its standard state at
298.15 K.  Thick +: experimental data [10] Calculated values, this work, thin +: starting from

perfect crystal, x: starting from liquid Cu simulated at 1773 K, o: starting from a half liquid-half
solid cell. Lines joining thick + symbols are included only as an eye-guide. 1: experimental T of

melting [10], 2: calculated T of melting (this work).
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Figures 2a and 2b: pair distribution function (Figure 2a) and root square distance (Figure 2b)
for pure Cu simulated in this work at different temperatures starting always from a simulation

cell containing a liquid-like configuration.
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Figure 3: Molar volume of our calculated liquid (o) and crystal phases (+) of pure Cu, as well as
values calculated in this work from experimental results on thermal expansion [29] and lattice

parameter [30] data (x)

Figure 1 shows the variation with temperature T (K) of the enthalpy of pure Cu
relative to its standard state at 298.15 K, (HT-Hst). The experimental values selected by
Hultgren et al. [10] and the values calculated in this work are represented showing the
very good agreement that exists between theory and experiment. The liquid-solid
transition can be seen in the variation of the enthalpy as a function of temperature, with
the characteristic jump in enthalpy at the melting point. This characteristic jump can also
be seen in Figure 3, representing volume (V) vs T. This behaviour will be described
below. The experimental temperature of melting of pure Cu is 1356.55 K [10], which is
indicated in Figure 1. The calculated values of HT-Hst agree with the experiment [10]
when starting from half liquid-half perfect crystal cells (composite cells) and from
perfect crystal cells. The value of Tf from simulations performed starting from the
initially perfect crystal is 1466 K. This value has been estimated by simulating at various
temperatures around 1466 K, separated 10 degrees increments (Figure 1). The enthalpy
of melting from the simulation at 1466 K is 11.6 kJ/Mol.K and the measured enthalpy of
melting 13.05±0.83 kJ/Mol.K.

When simulations start from a liquid configuration previously simulated at 1773
K a liquid is obtained even at 1173 K. This behaviour could be justified considering that
interatomic potentials were obtained by fitting properties of crystalline phases. Below
this temperature a supercooled liquid (1073 K) is obtained or solidification occurs into
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thermally disordered crystals (873 K and 973 K), as Figure 2a and 2b show. In Figure 2a
the pair distribution functions g(r) calculated at these temperatures are depicted, showing
that crystals, a supercooled liquid, or an amorphous solid have been produced, the pair
distribution function provides an insight into the corresponding structures. A crystalline
system shows peaks broadened by thermal fluctuations, for the liquid the long–range
order diminishes with distance and the split of the second nearest neighbour peak is
present in the amorphous, we can see these characteristics in Figure 2a. In Figure 2b the
root mean square displacements (RSD) calculated for the same temperatures show the
liquid, the amorphous and the crystal.

Figure 3 shows the variation of the molar volume of pure Cu with temperature.
The discontinuity in the variation of the calculated values with T corresponds to the
liquid-crystal transition. For this figure we have worked out the experimental values of
the molar volume from ∆L/L0 % selected by Touloukian et al. [29] and adopting as L0 the
experimental lattice parameter of Cu compiled by King [30].

Figure 4: Cp as a function of T (K). experimental values: +:crystalline and liquid Cu [10], ∆:
superheated Cu crystal [31]; �� �����	
�� 	���� 	�� 
���� ����� �	��� 
��� ����� �� ���������
	�

Tf [10], - - -: calculated Tf, this work.

In Figure 4 the simulated Cp values for pure Cu are represented against
temperature, the calculations were done for crystalline and liquid Cu. Around fusion
temperature Cp values follow the same behaviour as experimental data, some data
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increase with temperature whereas other present a constant value. Errors were estimated
as the square root of the value of the variance and are represented in the same Figure.
The variation of the experimentally measured Cp with T (K) included in this Figure for
crystalline and liquid Cu were taken from Hultgren [10] and for solid Cu superheated
above its melting temperature from Janaf tables [31].

Figure 5: Pair distribution function g(r) for pure liquid Cu at four different temperatures.
� � �	����	
�� 	���� �
��� ������ � � ���������
	� 	���� ��� 

The experimental pair correlation function g(r) has been tabulated by Waseda
[32] for liquid Cu at 1873 K, 1773 K, 1573 K and 1423 K. In Figure 5 the very good
agreement of the g(r) curves that have been calculated in this work is shown through the
comparison with the experimental g(r) points [32]. The g(r) curves have the typical shape
for liquid metals at every temperature in this figure. At 1873 K, 1773 K and 1573 K
liquid Cu has been simulated from pure fcc Cu perfect lattice. To simulate the liquid at
1423 K the starting configuration was liquid Cu at 1773 K. When starting from the
perfect crystal a crystal is obtained at 1423 K (this result is shown in Figure 1). Figure 6
shows the same comparison for pure liquid Mg at 953 K, which has been simulated
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starting from the perfect fcc crystal of pure Mg. Table 3 contains the measured [33] and
calculated (this work) values of the structural characteristics of the main peaks of g(r) for
pure Cu at 1423 K and pure Mg at 953 K.

Figure 6: Pair distribution function g(r) for pure liquid Mg at 953 K. The solid line shows the
function calculated in this work. �� ���������
	� 	���� 
	��� !��� ��� 

Table 3: Comparison between calculations (this work) and experiment [33]. Structural
information on the main peaks of g( r ) for liquid Cu and Mg  near their melting points.

Average interatomic distance = (atomic volume/Avogadro number)1/3

Cu, Mg & alloys Simulation Experimental

xMg : Mg at.fr. r1(Å) r2(Å) � r1(Å) r2(Å) �

0 2.49 4.72 11.9 2.51 4.75 12.7

0.49 2.59 4.82 10.8 2.57 5.05 9.8

0.66 2.69 5.02 10.4 2.69 5.20 9.5

0.86 3.07 5.92 10.1 3.04 5.44 10.8

1 3.09 5.84 9.9 3.10 5.75 11.7

Pure Mg is hcp structure but the alloys were modelled as hcp only at 300K, and
will be presented in next section. For pure Mg hcp at 300K we have obtained the lattice
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parameters (a =3.230 Å and c=5.271Å) in good agreement with experimental data (table
1). Other calculated properties were Cp =26.538 kJ/mol and the coefficient of linear
thermal expansion (8.37 K-1) both near experimental data (24.895 kJ/mol and 8.2 K-1).

B. The Alloys
B1. Structure

The structure of liquid Cu, Mg and Mg-Cu alloys has been experimentally studied
by Lukens and Wagner [12]. They used X-rays as a radiation probe to evaluate the
interference functions (or structure factors) for pure Cu at 1373 K,  pure Mg at 973 K and
Mg-Cu alloys with 49, 66 and 86 at % Mg at temperatures about 50 °C above the
liquidus (958 K for the 49 at% Mg alloy and 873 K for the 66 and 86 at % Mg alloys).
They determined the positions of the first peak (r1) and of the second peak (r2) in the
reduced partial distribution function that they assumed composition independent and in
the total distribution function G(r) and the coordination numbers η from the radial
distribution functions (RDF(r)). As the coordination numbers decrease to a minimum
with the increasing Mg content of the alloy, the existence of short-range order in the
liquid is assumed by Lukens and Wagner [12]. We have simulated pure liquid Cu and
Mg and the liquid alloys with 49, 66 and 86 at % Mg at the temperatures of the
experiment. We have calculated the pair distribution (or probability) function gij(r) (i, j:
Mg, Cu). From these we obtained the reduced partial distribution functions:

                                  Gij (r) = 4 π r ρ0 [gij(r) - 1]                                       (6)

where ρ0 is the macroscopic atomic density of the material. To calculate the reduced total
distribution function we have used:

                                   G(r) = ΣiΣj wij Gij(r)                                               (7)

With

                                    wij = ci cj (fi fj/<f>2)                                                (8)

wij obtained from X-ray scattering experiments are for Cu-49at%Mg alloy [12] and we
have adopted these reported values for the corresponding alloy. We have calculated wij

for all the alloys and for the pure metals from the coherent scattering length for neutrons
scattering in pure Cu and pure Mg [34]. The radial distribution function is:

                      RDF(r) = 4 π r2ρ(r) = r G(r) + 4 π r2ρ0                                   (9)

and the area under its first peak gave us the coordination number η. We did not find
meaningful differences in G(r) and RDF(r) when using neutron or X-rays scattering
factors. In this work the area under the first peak has been calculated by considering the
minimum after the first peak as the cutoff point. Figures 7 and 8 show the curves G(r)
and RDF(r) calculated in this work. Table 4 shows the values of the position of the first
and second peak maxima of G(r) for the pure metals and the alloys, as obtained in the
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present work and comparison with experiment. The results of the simulation show also a
minimum in η as a function of Mg contents, it should correspond to the existence of short
range order in the alloy.

Figure 7: Reduced total distribution functions of the liquid Cu-Mg alloys simulated in this work.
They compare with the experimental results shown in Figure 3 from reference [12].

Figure 8: Total radial distribution functions of the liquid Cu-Mg alloys simulated in this work.
They compare with the experimental results shown in Figure 5 from reference [12].
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Table 4. A comparison between simulation (this work) and experiment [12] for the pure liquid

metals Cu and Mg and for Mg-Cu alloys: Positions of the first and second peak maxima of
G(r) (r1 and r2�� "������	
��� ������� � �	����	
�� !��� 
�� �	��	� ���
����
��� !���
����

Calculated (this work) Experimental

Phase Composition
Mg at. fr.

Structure Lattice
parameters

Phase Composition
Mg at. fr.

Structure Lattice
parameters

MgCu2 0.3333 C15 a =7.097 MgCu2 0.305 -0.333 C15 a=7.022
to 7.048

Mg2Cu 0.6667 Ortho-
rhombic

a= 5.384
b= 9.099
c= 18.82

Mg2Cu 0.6667 Ortho-
rhombic

a=5.284
b= 9.07
c=18.25

B.2. Thermodynamics
Simulations were performed using semigrand-canonical [28] ensemble to

calculate the difference in chemical potential of Mg and Cu atoms. In this method one
specie, Cu, is converted in another, Mg, and the resulting potential energy change
∆UMg/Cu determined. This is related to the change in chemical potential ∆µ by

              ∆µ Mg/Cu = -kBT ln[(NMg/(NCu +1))exp(-∆UMg/Cu/ kBT)]                          (10)

Each fifth step, on average, we evaluate the energy associated with the conversion
of a randomly chosen Cu atom to Mg, ∆UMg/Cu, and as the simulation proceeds determine
the average value of the exponential in equation (10). The change of Mg into Cu is only
considered but not actually performed, the configuration remains unchanged after
evaluating ∆UMg/Cu.

We first consider Gibbs free energy for Mg-Cu liquid alloys at 1100 K. Figure 9
shows our calculated values of chemical potential differences for Mg-Cu liquid alloys at
1100 K.

Simulated values of ∆µ/kT have been fitted by

                       ∆µ/kT = ln(x/(1-x))+a+(b.x)+ c.x2+d.x3                                               (11)

Integration of equation (11) with respect to the Mg atom fraction (x(Mg)), and the
use of the pure liquid component metals at 1100 K as references (liquid Mg and
supercooled liquid Cu) gives the Gibbs energy of mixing of the alloy at 1100 K:

∆G = [x ln x + (1-x) ln(1-x) + (b/2) (x2-x) + (c/3) (x3-x) + (d/4) (x4-x) ] k T   (12)

It is represented in Figure 10a together with the experimental values selected by
Hultgren [10] and with later measurements by Juneja et al. [11]. The minimum of the
calculated curve is located around x(Mg) = 0.6 near its location at x(Mg) = 0.5 in the
experiment, which is a meaningful coincidence. The agreement with the experimental
data improves, as expected, near the pure metals, towards the extremes of the curve.
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Figure 9: Calculated values of chemical potential differences (∆µ/kT) as a function of Mg atomic
fraction (x(Mg)), for Mg-Cu liquid alloys at 1100K, this work.

Figure 10b shows the separation from ideality of the integral free-energy at 1100 K, that
is the excess free-energy. ∆EGm calculated from simulated values of ∆µ/kT represented in
figure 10b is compared with ∆EGm free-energy calculated from experimental
measurements selected by Hultgren [10] and from measurements of Mg vapour pressures
done by Juneja [11]. The minimum of modelled curve is only slightly shifted towards
richer in Mg values. The so-called experimental values for mixing free Gibbs energy are
not direct measurements but entail the use of models including excess functions. The
difference between our model calculation and the other authors results in Figures 10 does
not show which one is better.

Figure 11a shows our calculated values of the thermodynamic activities of Mg
and Cu at 1100 K together with the experimental data reported in [10] and [11]. The large
negative deviations from ideality exhibited in the experimental curves are more
pronounced in our calculations of the activity of Mg and less pronounced in the
calculated activity of Cu. Figures 11b and 11c show the activity coefficients γ(Mg) and
γ(Cu) plotted against (1-x(Mg))2 and (1-x(Cu))2, respectively. Although in both Figures
the plot can be fitted by two terminal straight lines and a central curve region, as it is
expected for metallic systems [11] only in the Cu-rich extreme the calculated straight line
for the modelled alloy coincides with the straight lines calculated from the experimental
results.
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Figure 10: Mg-Cu liquid alloys at 1100K a:  � � curve of Gibbs free-energy of mixing,
calculated in this work, experimental values selected by Hultgren [10] (+) and measured by

Juneja [11] (x). Experimental errors (�� ����
�� �# ��� �	������ $ �%& 	�� �	������ ' �%% � b: �
: curve of Gibbs excess free-energy, calculated in this work,  experimental values selected by
Hultgren [10] (+) and measured by Juneja [11] (x). Experimental errors (�� ����
�� �# ���

labelled H [10] and labelled J [11].
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Figure 11: Liquid Mg-Cu alloys at 1100 K. a: Activities of  Mg and Cu; x(Mg): Mg atomic
fraction.  � � �	����	
�� 	����� 
��� ����( �	��) ) )� $��
*��� �
 	�� �%& ( ���� ���� '���+	 �
 	��

[11]. b and c: curves of the activity coefficients calculated in this work γ(Mg) and γ(Cu) plotted
against (1-x(Mg))2 and  (1-x(Cu))2, respectively. Experimental γ(Mg) and γ(Cu): + [10], x[11].

b: Cu-rich extreme, terminal straight line - - - (this work), � �%% � c: � "�)���� ��
�����

terminal straight lines, this work and references [10] and [11].
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Figure 12: Enthalpy of mixing of Mg-Cu alloys at 1100 K. o and �� �	����	
�� 	���� �
���

work), + and error bar limited by -: Hultgren et al. [10], x and error bar limited by �� '���+	 �


al. [11]

In Figure 12 the calculated and experimental values of heat of mixing are shown
and the calculated and experimental values of entropy of mixing and excess entropy are
represented in Figure 13. The calculated heat of mixing is more negative than the
experimental values, this behaviour leading to the high values of mixing and excess
entropy as compared with the experiment (Figure 13). The asymmetry of the heat of
mixing curve is slightly shifted towards 0.6 Mg at. fr. whereas the experimental data
shows a minimum between 0.4 and 0.5 Mg at. fr. Nevertheless, the differences between
experimental and calculated heat of mixing values in this work are much smaller than
those presented by other authors, using also EAM model, for a different system [35]. The
calculated curves of entropy of mixing and excess entropy are within the error bars
determined at x=0.5 by Hultgren et al. [10] and by Juneja et al. [11], but the departure
from ideality is greater for the simulated alloys than in the experiment.

The free-energy curves for the metastable fcc and hcp solid solution at 300 K
have been calculated. Figure 14 shows the calculated values of ∆µ/kT fitted to the cubic
polynomia (equation 11) as a function of the Mg atomic fraction for the Mg-Cu fcc and
hcp crystalline alloys at 300 K. In Figure 15 the alloy free energy of mixing referred to
the free energy of the pure metals at the simulation temperature are represented at 300 K.
The free-energy was obtained by using equation 12. Hcp is more stable than fcc from 0.2
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at % Mg to pure Mg. From pure Cu up to 0.2 at % Mg the fcc solid solution is relatively
more stable than the hcp solid solution. By extrapolating the solvus curve at the rich-Cu
end of the assessed phase diagram [14] down to 300 K an experimental solid solubility
limit of approximately 0.03 at % Mg in fcc Cu is obtained. The g(r) curve for the
thermally disordered metastable fcc crystalline solid solution at 300 K is shown in Figure
16 for 60%at. Mg.

Figure 13: Molar entropy of mixing and molar excess entropy of Mg-Cu liquid alloys at 1100 K.
Molar entropy of mixing: �� �	����	
�� !���
���( � 	�� � ����
�� �# ,� ���������
	� 	���� 	��

error bar due to Hultgren et al. [10]; � 	�� �	���� � ����
�� �# ^: experimental values and error
bar due to Juneja et al. [11]. Excess molar entropy: - - - curve: calculated function; +:

experimental values due to Hultgren et al. [10], x and dashed � ����
�� �# ^: experimental
values and error bar due to Juneja et al. [11].

We have simulated the solid solution and the liquid alloy at 1173 K by using half
liquid-half solid cells. From 1 at % Mg alloys up to 2 at % Mg alloys simulations gave a
crystal and for the other compositions (from 3 at. % Mg up to 90 at. % Mg) gave the
liquid alloy, as it is expected from the phase diagram [14]. We obtained ∆µ/kT for the
solid and for the liquid phases. Fitting with equation 11, and integrating (equation 12),
we have obtained ∆MGs and ∆MGl, referred respectively to the mixture of the pure solid
metals and the pure liquid metals [28]. Then, we added to ∆MGl a term that is the sum of
the free-energy differences between the supercooled liquid and the crystalline states of
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the pure components ∆Gi
l-s, (i=Cu, Mg) weighted by their respective concentrations. We

have calculated ∆Gi
l-s, using Turnbull approximation [36]:

             ∆Gl-s = {x.[∆HMg
f.((T-TMg

f)/T
Mg

f)] + (1-x).[∆HCu
f.((T-TCu

f)/T
Cu

f)]}             (13)

Adding this term, the process of obtaining the liquid alloy at 1173 K can be
described as follows. Pure crystalline metals melted at 1173 K mix giving the liquid alloy
at this temperature. By adding this term both free-energies are referred to the mixture of
pure crystalline metals. Curves are shown in Figure 17. Drawing the common tangent to
both curves in the Cu-rich extreme we have obtained pure Cu in equilibrium with the Cu-
10 at % Mg liquid alloy at 1173 K.  The experimental concentrations taken from the
phase diagram are 3.5 at % Mg for the solid solution in equilibrium with a 13 at % Mg
liquid alloy at 1173 K.

Figure 14: Mg-Cu alloys, calculated chemical potential differences fitted by equation (11) . +
and ---: metastable fcc solid solution at 300 K; x and �� ��
	�
	��� ��� ����� ����
��� 	
 �&& -�

B.3. The Compounds
The non-stoichiometric MgCu2 fcc, C-15 type structure and the orthorhombic

stoichiometric Mg2Cu compounds have been simulated at 300 K. Experimental MgCu2

lattice parameter and enthalpy of formation [23] were used to adjust Mg-Cu interactions
(see Method above) using the EAMLD computer code. The experimental [37] and
calculated lattice parameters of both compounds are shown in Table 5.
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Figure 15: Mg-Cu alloys, free-energy of mixing.  ---: metastable fcc solid solution at 300 K;
- .- . : metastable hcp solid solution at 300 K.

Figure 16: Mg 60 at.%-Cu thermally disordered crystalline alloy simulated in this work at 300 K
and its calculated partial pair distribution functions.
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Figure 17: Calculated curves of Gibbs free-energy of mixing for Mg-Cu alloys at 1173 K (this
work). �� ��#�
	����� ��	��� ) ) )� ��.��� ��	��� /�!������� 
�� ���
��� �! 
�� ��#�
	����� ����

metals at 1173 K.

Table 5: Calculated (this work) and experimental values [37] of lattice parameters.

Cu Mg MgCu2

Experiment Calculated Experiment Calculated Experiment Calculated

Ec (kJ mol-1) -336.7 -336.7 -145.8 -145.7 -285.6 -285.7

a (Å) 3.603 3.603 3.232 3.188 7.03 7.052

c (Å) 5.149 5.218

C11 (GPa) 176.20 175.20 63.32 66.05

C12 (GPa) 124.94 126.13 26.31 37.65

C13 (GPa) 21.65 29.27

C33 (GPa) 65.61 78.83

C44 (GPa) 81.77 78.74 18.07 12.73
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Conclusions
We have presented a MC calculation for the structural and thermodynamic study

of Mg-Cu alloy. The calculation can reproduce a solid, a glass and a liquid structure
when the phase diagram shows these structures as we can see with the resulting g(r)
function (each case is analysed in the previous text). We have calculated the liquid with
potentials fitted to the solid state. Lukens and Wagner [12] measurements of the radial
distribution function and the existence of liquid order were confirmed. The calculations
of Gibbs free energy, activities and heat of mixing for liquid at 1100 K were performed
and the differences between experimental and calculated values in this work are much
smaller than those presented by other authors [35]. Our simulation calculation was able
to reproduce a point of the phase diagram.

The system with 256 atoms is enough to reproduce experimental results and the
bigger cells do not show differences to be taken into account.

This is a first modelling calculation for Mg-Cu alloy using MC and we are able to
confirm theoretically the previous experimental observations. Results improved
considerably with respect to previous calculations with other techniques. We may
therefore conclude that MC calculations are worth using in these studies. Also a potential
fixed to solid state properties gave good results even for liquid structures. In the future it
is desirable to have similar MC studies for other systems with available experimental
data.
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