ESTUDIO DE ESPECTROS DE ABSORCIÓN DE ANTRACENOS Y PIRENOS POLISULFURADOS MEDIANTE CÁLCULOS TD-DFT EMPLEANDO FUNCIONALES HIBRIDOS Y DOBLEMENTE HIBRIDOS

Raul O. Garay

INQUISUR, Departamento de Química, Universidad Nacional del Sur, Avda. Alem 1253, Bahía Blanca, 8000, Argentina, rgaray@criba.edu.ar

Introducción

Los sulfuros de arilo son elementos estructurales útiles para la construcción de materiales orgánicos y han sido incluídos en una gran variedad de estructuras tales como polimeros conductores,[1] oligomeros,[2,3,4] y dendrímeros[5] y cristales líquidos discóticos.[6] El interés en arenos polisulfurados surge de la interrelación entre el sistema pi y los átomos de azufre que origina cromóforos de carácter dual, esto es, pueden estabilizar tanto cargas negativas como positivas. En general, sus propiedades fotofísicas han recibido menor atención que las eléctricas.

Esquema 1

Tiempo atrás, nuestro grupo sintetizó una serie de antracenos y pirenos polisulfurados con el objetivo de obtener sistemas aromáticos condensados que incluyeran atomos de azufre.[7] Posteriormente hemos sintetizado otros sistemas aromáticos polisulfurados, ver Esquema 1. En el presente trabajo se ha analizado el rendimiento de distintos funcionales híbridos y doblemente híbridos para obtener los

máximos de absorción de estos compuestos aromáticos polisulfurados en THF con el objeto de racionalizar los datos espectroscópicos experimentales y predecir tendencias de sus propiedades ópticas.

Metodología

Todos los cálculos se realizaron empleando el programa ORCA[8] utilizando la Teoría del Funcional de la Densidad (DFT). Las optimizaciones de las geometrías del estado fundamental se realizaron con el funcional B3LYP junto con el grupo de base triple zeta def2-TZVP(-f), la corrección COSMO de efectos del solvente y el término empírico de la energía de dispersión de Grimme (D3).[9] El espectro vibracional calculado con la misma metodología fue chequeado para asegurar que no estuvieran presentes frecuencias imaginarias. Las transiciones de absorción fueron calculados mediante la Teoría del Funcional de la Densidad Dependiente del Tiempo (TD-DFT) empleando el grupo de base def2-TZVP(-f). Se utilizaron los funcionales híbridos B3LYP, PBE0, M06, PBE38, BHLYP, X06-2X, CAM- y LC-PLYP y los funcionales doblemente híbridos PBE0-DH, B2PLYP, mPW2-PLYP, B2piPLYP, B2GP-PLYP, DSD-PLYP y DSD-PBEP86.

Resultados

Las geometrías B3LYP-D/def2-TZVP(-f) de los confórmeros up-down, *ud*, y upup, *uu*, de **1** presentan energías relativas similares ($E_{ud} - E_{uu} = 0.02$ Kcal mol⁻¹). Así, ambos contribuyen de manera casi similar al espectro de absorción. Los valores de las absorciones verticales de ambos confórmeros [TDDFT/BHLYP/def2-TZVP(-f),COSMO (THF)] son similares, $\lambda^{vert-a}(ud) = 358$ nm and $\lambda^{vert-a}(uu) = 359$ nm. Estudios con otros núcleos aromáticos han indicado que los espectros UV-vis calculados de distintos conformeros son casi idénticos.[10] Entonces, en las simulaciones se utilizó solo una estructura seleccionada con los grupos opuestos en conformaciones up y down para cada sulfuro, e.g. la conformación *udud* de **2**.

Figura 1. Estructuras optimizadas por DFT-B3LYP-D en THF d 1(ud), 1(uu) y 2 (udud).

	Tabla 1. λ_{max} experimentales y teóricos (en nm)														
	λ _{max(} exp) en THF	λ _{max} en THF (TD-DFT)													
Func.		B3LYP	PBEO	M06	PBE38	BHLYP	X06 -2X	LC- PLYP	PBE0 -DH	B2 -PLYP	mPW2 -PLYP	B2π -PLYP	B2GP -PLYP	DSD -PLYP	
1	416	391	381	394	364	358	367	340	369	379	375	367	366	371	
2	449	468	448	447	398	371	378	350	393	409	399	387	385	394	
4	447	460	444	454	410	385	394	367	407	426	417	405	405	418	
6	384	431 ^c	405	408	359	330	342	317	347	358	351	342	339	345	
8	427	410	400	411	382	364	373	356	382	399	392	384	384	396	

Los resultados con los distintos funcionales son muy diferentes. Por ejemplo, aunque con B3LYP los valores absolutos de $\lambda^{\text{vert-a}}$ están en el rango de los λ_{max} , ellos muestran grandes dispersiones. Con BHLYP presentan una relación lineal entre λ_{max} y $\lambda^{\text{vert-a}}$ con R = 0.987, aunque las energías de excitación experimentales son sistemáticamente subestimadas por 0.5 eV ±0.04 eV. En general, tanto el aumento del porcentaje de HF en la energía de intercambio en funcionales híbridos o el aumento del porcentaje de MP2 en la energía de correlación de funcionales doblemente híbridos aumenta esta subestimación, aunque el coeficiente de correlación R varía en todos los casos.

Referencias

[1] Kricheldorf HR, Nuyken O, Swift G. Handbook of Polymer Synthesis. 2nd ed. New York: Marcel Dekker; **2005**.

- [2] Vicente J, Abad JA, Lopez-Nicolas RM. Tetrahedron 2008;64:6281.
- [3] Goyot O, Gingras M. Tetrahedron Lett. 2009;50:1977.
- [4] Cammidge AN, Gopee H. J Mater Chem 2001;11:773.
- [5] Gingras M, Raimundo JM, Chabre YM. Ang Chem Int Ed 2006;45:1686.
- [6] Kumar S. Chem Soc Rev 2006;35:83.
- [7] Del Rosso PG, Almassio MF, Bruno M, Garay RO. Tetrahedron Lett 2010;51:6730.
- [8] Neese F. Wiley Interdiscip Rev: Comput Mol Sci 2012;2:73.
- [9] Grimme S. J Comput Chem 2006;27:1787.
- [10] Mori T, Grimme S, Inoue Y. J Org Chem 2007;72:6998.