XXXI Congreso Argentino de Química 25 al 28 de Octubre de 2016 Asociación Química Argentina

Sánchez de Bustamante 1749 – Ciudad de Buenos Aires – Argentina The Journal of The Argentine Chemical Society Vol. 103 (1-2) January – December 2016 ISSN: 1852 -1207 Anales de la Asociación Química Argentina AAQAE 095 - 196

SÍNTESIS DE NUEVOS DERIVADOS ESTEROIDALES 22-OXO-16,26-HIDROXIMINO

Reyna Zeferino Díaz^{1*}, María Antonieta Fernández-Herrera², Jesús Sandoval-Ramírez¹.

¹Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Ciudad Universitaria 72590 Puebla, Pue. Tel/Fax: (01 222)2295500 ext. 2842,2 CINVESTAV Dpto. de Física Aplicada. Unidad Mérida Km. 6 Antiqua carretera a Progreso Apdo. Postal 73 Cordemex 97310 zeferino.diaz@correo.buap.mx

INTRODUCCIÓN.

Los esteroides pertenecen al vasto número de productos naturales. Estos metabolitos secundarios se encuentran en plantas y animales y son de vital importancia ya que a pesar de encontrarse presentes en muy bajas concentraciones, realizan actividades de enorme importancia para su supervivencia.

Una variedad de esteroides con inusual e interesante estructura, han sido aislados de distintas especies de esponjas marinas, por ejemplo de Cinachyrella alloclada y C. apion, fueron extraídos dos oximas esteroidales, los cuales poseen el grupo hidroximino en los anillos A y B principalmente¹(1 E/Z), o de Cinachyrella australiensis (2) presentó actividad eficaz contra el virus de la hepatitis en pruebas in vitro, otros de derivados de origen sintético poseen una oxima en C-20 (3), estos derivados han presentado distinta actividad biológica, mostrando toxicidad ante distintas células cancerígenas² y como inhibidores de la 5α-reductasa³.

Figura 1. Ejemplos de oximas esteroidales con actividad biológica

DISCUSIÓN DE RESULTADOS

Se llevó a cabo la síntesis de 4 oximas esteroidales en la cadena lateral colestánica y una sobre la posición C16 del anillo D, la ruta siguiente describe en el esquema 1.

La modificación de la cadena de la diosgenina en una 22-oxocolestánica hidroxilada en C-26 se llevó a cabo mediante el empleo del eterato de trifluoruro de boro en presencia de anhídrido acético. Posteriormente, el grupo hidroxilo en C-26 fue oxidado selectivamente con clorocromato de piridinio (PCC) para obtener el derivado aldehídico 2 el cual es un intermediario clave para formar derivados nitrogenados, posteriormente el aldehído reaccionó con clorhidrato de hidroxilamina en presencia de carbonato de potasio, la reacciones dieron las correspondientes oximas.

XXXI Congreso Argentino de Química 25 al 28 de Octubre de 2016 Asociación Química Argentina

1 R₁=OH, R₂=C=O, R₃=OH 2 R₁=OAc, R₂=H,H, R₃=COH

 $3 R_1$ =OH, R_2 =H,H, R_3 =NOH e 4 R₁=OH, R₂=H,H, R₃=NOH z

$$\begin{array}{c} NH_2OH \cdot HCI \\ K_2CO_3 \ / MeOH \\ T \ amb \\ \\ \hline \\ R2 \\ \hline \\ R3 \\ \hline \\ 5 \ R_1=OH, \ R_2=NOH, \ R_3=OH \\ 6 \ R_1=OAc, \ R_2=H,H \ , \ R_3=NOH \ z \\ \hline \\ R4 \\ \hline \end{array}$$

Esquema 1. Ruta de síntesis de oximas 22-oxocolestánicas

Las oximas 22-oxocolestánicas, se obtuvieron en la siguiente relación, el isómero-trans (3) en 70% y el isómeros-cis (4) en 30 %, para 5 80 %, el isómero-trans (6) en 75% y el isómeros-cis (7) en 22 %.

CONCLUSIONES

Se llevó a cabo la síntesis de 5 nuevas oximas esteroidales 22-oxocolestánicas, las cuales serán evaluadas para medir su actividad biológica.

Se llevó a cabo la caracterización de estos compuestos por técnicas físicas y espectroscópicas.

REFERENCIAS

¹ Rodríguez, J.; *Tetrahedron Letters* **1997**, 38, 833.

² Ding, X.; Chinese Journal of Organic Chemistry **2005**, 25, 1606. Shao-Rui C.; Journal of Chemical Research 2014, 38, 334.