XXXI Congreso Argentino de Química 25 al 28 de Octubre de 2016 Asociación Química Argentina

Sánchez de Bustamante 1749 - Ciudad de Buenos Aires - Argentina

The Journal of The Argentine Chemical Society Vol. 103 (1-2) January – December 2016 ISSN: 1852 -1207 Anales de la Asociación Química Argentina AAQAE 095 - 196

EXCREMENTO VACUNO EN BIOCOMBUSTIBLE Y ABONO: PRODUCCIÓN Y CALIDAD DE BIOGAS VARIANDO CONTENIDO DE SÓLIDOS TOTALES

Palavecino, Ana C.; Campos, Delia; Herrera, Carolina; Sánchez de Pinto, M.Inés.

Instituto de Ciencias Químicas, Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Av. Belgrano (S) 1912, CP 4200, Santiago del Estero. (0385)450 e-mail:cecilia palavecino 84@hotmail.com; 9528. inesdep@unse.edu.ar

INTRODUCCIÓN

La digestión anaeróbica (DA) es el proceso en el cual microorganismos descomponen material biodegradable en ausencia de oxígeno[1]. Este proceso tiene tres ventajas particulares: los desechos biodegradables son transformados en biogás cuyo principal componente es metano, se reduce la masa del desecho y el efluente del digestor, llamado biol, lodo o digerido, tiene altos contenidos de materia orgánica (ya que 5-10% del total de la MO es transformada en biogás), nitrógeno, fósforo y potasio, componentes esenciales para el crecimiento de las plantas, por lo que, puede ser utilizado como fertilizante después de ser sometido a un proceso de estabilización[2,3]. La actividad metabólica involucrada en el proceso metanogénico se ve afectada por diversos factores: el sustrato (nutrientes disponibles), la relación Carbono/Nitrógeno (25-35) y la concentración del sustrato (óptima: 8-12%sólidos totales); la temperatura (mesofílica, termofílica); el nivel de acidez (pH óptimo 6-8); el agregado de inoculantes; el grado de mezclado y la presencia de compuestos inhibidores del proceso (metales pesados, salinidad, etc.[4,5]. La composición del biogás puede variar entre un 48% -70% de CH_4 , 30% - 45% de CO_2 , 200 ppm-1% de O_2 , 50 ppm-3% de H_2S , y trazas de otros gases [5,6].

OBJETIVOS

- la producción y composición del biogás generado durante la Evaluar degradación anaeróbica de mezclas acuosas de excrementos vacunos con diferentes contenido de sólidos totales y volátiles.
- Analizar características fisicoquímicas del sustrato inicial y del efluente generado a los 45 días de digestión anaeróbica para su valoración agronómica

METODOLOGÍA

- -Reactores: bidones plásticos de 5 L con sistema graduado para recolección de
- -Material a tratar: mezcla de excremento vacuno fresco y agua (volumen 3L) con contenidos variables de sólidos totales: A(6%), B(8%), C(10%), D(12%).
- -Temperatura de trabajo 37°C. Agitación manual.
- -Inóculo: efluente anaeróbico de ensavos anteriores (600 ml).
- -Muestreo: material de entrada al reactor y a los 45 días.
- -Biogás producido: determinación diaria del volumen liberado y de la composición a los 30 y 45 días.
- -Caracterización fisicoquímica de material entrada y efluente: pH y C.E del extracto acuoso. Sólidos totales(%ST), fijos(%SF) y volátiles(%SV) según métodos APHA

XXXI Congreso Argentino de Química 25 al 28 de Octubre de 2016 Asociación Química Argentina

Sánchez de Bustamante 1749 – Ciudad de Buenos Aires – Argentina The Journal of The Argentine Chemical Society Vol. 103 (1-2) January – December 2016 ISSN: 1852 -1207 Anales de la Asociación Química Argentina AAQAE 095 - 196

SMEWW 1999, nitrógeno total(%NT) por Kjeldhal; Materia orgánica(%MO) y carbono orgánico(%CO) a partir del contenido de %SV. DQO según métodos APHA SMEWW 1999. AGV, AP y AT según Jenkins S.R. (1991). P_T por método de azul de molibdeno propuesto por Murphy y Riley, NO₃ y NH₄⁺ según métodos APHA SMEWW 1999. Ca⁺⁺ y Mg⁺⁺ por complexometria. Composición del biogas con Biogas Analyzer-Baggi PGD3

RESULTADOS

Tabla 1. Parámetros fisicoquímicos de los efluentes de entrada y salida de los reactores											
	A		А, В, С у D. В		С		D				
	Entrada	Salida	Entrada	Salida	Entrada	Salida	Entrada	Salida			
S.T (%)	5.6	4.9	8.0	6.8	9.3	8.0	12.0	8.5			
S.F (%)	1.9	1.9	2.6	2.6	3.0	3.1	3.6	3.1			
S.V (%)	3.7	3.0	5.3	4.2	5.3	4.9	8.5	5.4			
pН	7.6	7.6	7.7	7.5	7.7	7.7	7.7	7.5			
C.E(mS/cm)	3.7	3.8	4.6	4.7	4.9	4.7	5,0	4.8			
A.T (mgCaCO ₃ /L)	2150	2450	2583	2600	2867	2750	3250	2850			
α (AP/AT)	0.17	0.06	0.20	0.08	0.23	0.09	0.22	0.1			
AGV (mgCaCO ₃ /L)	750	342	1167	375	1467	650	2017	667			
Δ (AGV/AT)	0.35	0.14	0.45	0.14	0.51	0.24	0.62	0.23			
DQO(mg/L)	34188	24191	64033	25434	66667	28386	87400	31339			
M.O (%B.S)	66.2	60.9	66.8	62.0	67.2	62.1	70.6	63.5			
C.O (%B.S)	36.8	33.9	37.1	34.4	37.3	34.5	39.2	35.3			
NTK (%B.S)	1.32	1.69	1.26	1.76	1.08	1.5	0.83	1.57			
C/N	27.9	20.0	29.5	19.6	34.5	23.0	47.5	22.5			
$NH_4^+(mg/L)$	39.2	80,0	43.3	108.3	42.5	57.5	88.3	26.7			
NO_3^- (mg/L)	1533	1790	1627	2183	2340	2443	2247	2317			
P _⊤ (mg/L)	339	323	382	380	438	386	480	467			
Ca ⁺⁺ (meq/L)	4.8	2.4	7.1	3.0	7.2	3.8	7.5	3.9			
Mg ⁺⁺ (meq/L)	2.8	5.3	3.6	6.6	4.1	5.7	3.4	6.1			

Tablas 2: Volumen y composición del biogás a 30 y 45 días de DA												
	A		В		С		D					
	(días)		(días)		(días)		(días)					
	30	45	30	45	30	45	30	45				
V _{total} (ml)	18320	21280	13870	16590	21580	26120	30570	36040				
VT (m³/kgSV)	0.16	0.19	0.09	0.10	0,11	0.14	0.12	0.14				
%CH₄	41	55	49	49	45	52	43	53				
%CO ₂	42	36	43	36	55	45	44	44				
%H₂S	240	168	384	272	51	11	21	8				
%O ₂	0.5	1.6	0.6	1,0	2.8	0.5	3,0	0.4				

CONCLUSIONES

Luego de 45 días de DA, en los reactores A, B, C y D se registró reducción en contenidos de ST, SV, MO, CO y DQO. Los valores de pH se mantuvieron dentro del rango que corresponde a actividad óptima de los microorganismos involucrados en el proceso. A mayor contenido de ST mayor fue el volumen de biogas liberado, excepto

XXXI Congreso Argentino de Química 25 al 28 de Octubre de 2016 Asociación Química Argentina

Sánchez de Bustamante 1749 - Ciudad de Buenos Aires - Argentina The Journal of The Argentine Chemical Society Vol. 103 (1-2) January – December 2016 ISSN: 1852 -1207 Anales de la Asociación Química Argentina AAQAE 095 - 196

en el reactor B que podría haber presentado pérdidas. El contenido de CH₄ en el biogas aumentó con el tiempo de digestión anaeróbica. Los contenidos de MO, CO y nutrientes(NO₃, Nt, K, Ca y Mg) en los efluentes de salida indicarían que podrían ser utilizado como abonos (previa estabilización de la MO) y fertilizantes de suelos.

BIBLIOGRAFIA

[1]Maoa,Ch., Feng,Y., Wang,X., Ren,G. 2015. Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews. 45,540-555.

[2]Arthurson, V. 2009. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land. Potential Benefits and Drawbacks. Energies 2, 226-242.

[3]Ghaly, A.E. and Al hattab, M. 2012. An Innovative Farm Scale Biogas/Composting Facility for a Sustainable Medium Size Dairy Farm. American Journal of Agricultural and Biological Sciences 7 (1): 1-16, ISSN 1557-4989 Science Publications.

[4]Hilbert, J.A. 2008. Manual para la producción de biogás Instituto de Ingeniería Rural I.N.T.A. – Castelar.

[5]Ward, A.J., Hobbs, P.J., Holliman, P.J., Jones, D.L., 2008. Optimization of the anaerobic digestion of agricultural resources. Bioresour. Technol 99, 7928-7940.

[6] Varnero, M. T., Carú, M., Galleguillos, K., Achondo, P. 2012. Tecnologías disponibles para la Purificación de Biogás usado en la Generación Eléctrica. Información Tecnológica, 23(2), 31-40.