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Abstract
The Pico Electronic Nose (EN), based on thin film semiconductor sensors, developed at the Univer-

sity of Brescia, is described. In particular we stress the advantages given by selecting the best features
extracted from the response curves. We perform feature selection (FS) on an EN dataset composed of 30
features, obtained by extracting five diverse features from the response curves of six metal oxide sensors. We
show that the performance (both classification error and PCA appearance) is always significantly better for
the best features than for all thirty features. Results are not univocal regarding the best feature type. Yet, for
three out of four datasets, in which the complete dataset can be decomposed, the features extracted over the
sensor desorption lead to higher performances. The standard R/R

0 
 situates in the lower part of the ranking.

Resumen
Se describe la Nariz Electrónica Pico, basada en semiconductores de películas delgadas, desarrollada

en la Universidad de Brescia. Se remarcan las ventajas que se obtienen eligiendo las mejores características
extraídas de las curvas de respuesta. La selección de características se hace sobre un conjunto de datos
compuesto de treinta características, obtenidas extrayendo cinco características diversas de las curvas de
respuesta de seis sensores de óxidos metálicos. Se observa que el comportamiento es significativamente
mejor para las mejores características que para el conjunto total de treinta. Los resultados no son unívocos
respecto al tipo de la mejor característica. Sin embargo, en tres de cuatro conjuntos de datos, en los cuales
el conjunto completo puede ser descompuesto, las características extraídas en la desorción del sensor
conducen a mejores comportamientos. El estándar R/R

0
 corresponde a la parte inferior de la clasificación.

Introduction
Electronic noses (EN), in the broadest meaning, are instruments that analyze gase-

ous mixtures to discriminate between different (but similar) mixtures and, in the case of
simple mixtures, to quantify the concentration of the constituents. ENs consist of a sam-
pling system (for a reproducible collection of the mixture), an array of chemical sensors,
electronic circuitry, and data analysis software [1].

Chemical sensors, which are at the heart of the system, can be divided into three
categories according to the type of sensitive material used: inorganic crystalline materials
(e.g. semiconductors, as in metal oxide semiconductor field-effect transistor structures,
and metal oxides); organic materials and polymers; and biologically derived materials.
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The sampling system depends on the sample type and on its preparation. For simple
gas mixtures, automated gas mixing stations consisting of certified gas bottles, switches,
and mass flow controllers are used. In the case of complex odors like food odors, the
volatile fraction (the so-called headspace) is formed inside a vial where a certain amount
of odor-emitting sample is placed.

Data analysis is a fundamental part of the EN, as it is for any sensor system or
analytical instrument. This is not the case for basic research on materials for gas sensing,
where the focus is traditionally the single sensors, which give higher responses or higher
sensitivity (or lower detection limit) towards a single gas (possibly with minor interferents).
Analysis of results is done visually, by inspecting response curves of single sensors at
various concentrations. There is normally an absence of (statistical) validation.

The case of ENs is different: a step toward real-world experimental conditions is
performed. What matters is the difference between responses (selectivity), not the magni-
tude of the responses towards single gases (sensitivity). Since single sensors are normally
not selective, arrays have to be used. Analysis by inspection becomes impossible: ENs are
judged (validated) by their prediction capabilities. “Enough” data have to be collected and
recorded to assess prediction capabilities, and this in turn gives importance to automated
measurement and recording system (production of a database) and consequently to the
analysis of  the data. ENs need diverse specialists.

Electronic noses have found two main application areas: food quality control and
environmental monitoring. The use of ENs for food quality analysis is two-fold: to dis-
criminate different classes of similar odor-emitting products and to predict sensorial
descriptors of food quality as determined by a panel (described generically as correlating
electronic noses and sensory data). Therefore, ENs can represent a valid aid for routine
food analysis. The second major application area of ENs is environmental monitoring, e.g.
malodours evaluation [8]. The comparative advantage in on-site landfill measurements,
for example, is the big odor intensities at stake; hence, sensitivity is less of an issue. The
disadvantage, on the other hand, is the difficulty in reproducible sample collection. On-
site measurements are difficult because of changing environmental conditions. There is,
therefore, a need for lengthy training, so that the training set is representative of all the
operating conditions, or for an effective screening. Lab measurements are difficult be-
cause the sampled gas degrades rapidly.

The combination of gas chromatography (GC) and mass spectroscopy (MS) is still
the most popular technique for the identification of volatile compounds [2], because the
separation achieved by the GC technique is complemented by the high sensitivity of MS
and its ability to identify the molecules eluting from the column on the basis of their
fragmentation patterns. The main drawbacks of the approach are, however, the cost and
complexity of the instrumentation and the time required to fully analyze each sample (around
one hour for a complete chromatogram). Comparatively, ENs are simple and less expen-
sive devices. They recognize a fingerprint, that is a global information, of the samples to
be classified. This means that, in contrast to GC/MS, the EN does not single out and
quantify each headspace component: only the global effect on the sensors is registered.
Apart from GC/MS, the sensory characteristics determined by a panel are important for
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odor quality assessment [3]. While humans are still the most efficient instruments for
sensorial evaluation, the formation of a panel of trained judges is expensive.

This article focuses on the Pico Electronic Nose system and on data analysis. The
Pico EN was first designed at the Sensor Lab in Brescia and was then engineered, and is
now commercialized by the SACMI Company (Imola, Italy, www.sacmi.it) as the Elec-
tronic Olfactory System EOS835. EOS835 uses advanced control electronics and has a user-
friendlier data analysis interface compared to the Pico EN.

The advantages of the Pico EN are the sensor type and the data analysis software.
Thin-film semiconductor sensors are stable and sensitive, while a suitably developed Matlab
toolbox enables reliable analysis, even of small data sets. For example, coffee samples
were classified with more than 90% accuracy with Principal Components Analysis (PCA)
and Multilayer Perceptrons (MLP). More importantly, EN data were correlated with panel
test judgments [4]. The Pico Electronic Nose has also been successfully tested for other
applications: to discriminate extra virgin from non-extra virgin olive oil [5]; to determine
the presence of bacteria and fungi in flour and maize [6]; to monitor the health of plants for
manned space missions [7].

MOS Sensors and EN Measurements
Gas sensors based on the chemical sensitivity of metal oxides semiconductors (MOS)

are readily available commercially and have been more widely used to make arrays for
odor measurement than any other single class of gas sensors. Although many metal oxides
show gas sensitivity under suitable conditions, the most widely used material is tin diox-
ide, SnO2, doped with small amounts of catalytic metal additives, such as palladium or
platinum. The gas is sensed by its effect on the electrical resistance of the SnO2 semicon-
ductor, resulting from combustion reactions occurring with lattice oxygen species on the
surface of the SnO2 particles. By changing the choice of catalyst and operating conditions,
SnO2-resistive sensors have been developed for a range of applications, for example by
adding Pt we obtain a H2S sensor [9], while the addition of Mo produces an ammonia
sensor [10]; although in all cases, the resulting sensors are not highly selective and remain
responsive to a large number of combustible gases. To gain the needed selectivity, several
slightly different sensors (sensor arrays) and multivariate data analysis are used.

Recent trends in the sensor field concern the simultaneous measure of more than one
sensor property (e.g., conductance and surface potential) or the use of different sensor
types (so-called hybrid arrays) to reduce the collinearity of the responses and, therefore,
obtain better discrimination.

The real challenge in the sensor field, which hampers a diffuse spread of the tech-
nique, still remain the stability of sensors over time (onset of drift) and reproducibility,
both inside a single batch and from batch to batch. Since the materials are nanostructured
and the working temperatures are over 200 – 300°C, the film could degrade over time,
affecting sensor stability. The difference in grain distribution explains the non optimal
reproducibility from batch to batch.

The typical measurement (i.e. sensor array characterization) consists of exposure of
the sensors to a concentration step, that is, a change of odor concentration from zero to c
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(each component of the vector stands for a gas component) and back to zero again, and the
recording of the subsequent change in the characteristic property of the sensor. The change
of the sensor signal output with time is referred to as dynamical response; for MOS sen-
sors, it is a conductance change. The parameters that are routinely considered to roughly
describe a single sensor response to a concentration step, and which depend on the sensor
type and on the gas type and concentration to be sensed (and, of course, on the measuring
conditions) are:
• The variation of the sensor response between the value in air y0 (the so-called baseline)

and the steady-state (or static or equilibrium) value in gas ys. Depending on the sensor
type, various functions of ys and y0 are considered the standard parameters characteriz-
ing the dynamical response.

• The degree to which the sensor recovers its baseline. Complete recovery can be ham-
pered by desorption processes that are too slow or irreversible changes of the surface
constitution (poisoning).

• The response time (i.e., the time to reach steady-state conditions in gas) and the recov-
ery time (i.e., the time to return to the baseline value). These values depend on the
adsorption and desorption kinetics of the surface-gas reactions. They are defined as a
fraction of the time needed to reach a steady-state value (in gas or air) or, modeling the
rise and fall as simple exponentials, as the time constants of the exponentials.

Multivariate analysis of a gas mixture data is a necessary tool for analyzing sensor
array data. Visual inspections of calibration curves and responses, as done for single gases,
is too lenghty and not informative enough when using the sensors in realistic applications.
In the case of complex mixtures, it is not interesting (nor possible) to quantify the concen-
trations of the huge number of single constituents (e.g., more than 700 for coffee vapors).
The calibration normally consists of making repeated measurements on different but simi-
lar classes of nominally equal samples (e.g., milk) subject to different heat treatments. It is
the inherent difficulty in the reproducible preparation and measurement of samples that
necessitates repeated measurements.

Normally, the cluster separation on principal component analysis (PCA) score plots
is used for evaluating a electronic nose performance. To further establish a functional
relationship between the measurement space and the class membership, supervised meth-
ods are employed, which need a training (calibration) phase. There is a wealth of super-
vised learning methods. For example, chemometrics, which stems from analytical chem-
istry, has its own bunch of methods (e.g. PLS, SIMCA). Neural networks, and multilayer
perceptrons (MLP) in particular, have been used in different application fields. MLP are a
particular class of functions (polynomials are another class), which originally were devel-
oped in parallel with the study of the brain, have been shown to have nice mathematical
properties, come with an effective way of adaptively changing the values of the param-
eters (known as error backpropagation) and, most importantly, have given good results in
different application fields.

What is generally true about learning is that the more complex the space of learning
functions, the easier the onset of overfitting. E.g. with a 9 order polynomial it is perfectly
possible to interpolate any set of 10 points (zero error), whatever the noise level is. In fact
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this amounts to learning the noise in the data and not only the underlying data generator,
i.e. fitting the (actual) data too much, i.e. overfitting. Various methods exist to avoid
overfitting [16].

References [11], [14] are the second editions of two established textbooks on statis-
tical learning, [12] is a tutorial on statistical learning for electrical engineers, while refer-
ence [15] is a review of data analysis for EN.

The Pico Electronic Nose
The sensors

The Pico EN (and the EOS835) contains six semiconductor thin-film sensors grown
by sputtering on an alumina substrate. The SnO2 type are deposited with the Rheotaxial
Growth and Thermal Oxidation (RGTO) technique [9]. The RGTO technique consists of
two steps:
1) During Rheotaxial Growth a metal layer is deposited by means of physical vapour
deposition on a substrate held at a a temperature higher than the melting point of the metal
(232°C for tin), forming islands of melt metal.
2) In the Thermal Oxidization step a complete metal-semiconductor transformation is ob-
tained by keeping the metallic film for ~30 hours at 600°C in a synthetic air flow. With
oxidation, agglomerates increase their volume by ~33% and therefore build interconnec-
tions allowing current flow.
The thermal oxidation step of the RGTO technique results in porous, nano-sized agglom-
erates and hence in stable sensors [13]. This sensor type has been tested for more than one
year under different conditions, and the response stability toward a few target gases like
CO and ETOH is better than ±3%.

Since the growing conditions are controllable, they can, to some degree, be tailored
to a particular application. A thin layer of noble metals can subsequently be deposited as a
catalyst to improve sensitivity and selectivity.

Another important parameter in the production of gas sensors is reproducibility and,
for RGTO, the reproducibility of the resistance in air and gas in the same batch is better
than ±2 %.

Altogether, these optimal results make the sensors unique and particularly suitable
for a electronic nose, where stability and reproducibility (e.g., for transferring the training
between different ENs) are important.

Data analysis
A statistical toolbox permits the classical tasks of the data analysis cycle to be per-

formed; for these experiments, a set of Matlab functions (a toolbox) was developed [4],
[15]. This set included:
• Signal preprocessing (median filter for spike removal, noise averaging) and plotting

(for gaining a first impression of the response curves).
• Exploratory analysis. First, various plots of the response curves and of the features are

drawn for each sensor separately (univariate analysis). After having visually checked
single sensors, the complete sensor array response is checked.  The most important
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multivariate tool for exploratory analysis is PCA (score and loading plots). PCA is
implemented with a simple user interface that allows selection of the sensors and classes
to be displayed, along with grouping of classes. PCA also serves for feature reduction
before the use of multilayer perceptrons (MLP).

• Learning with MLP. The inputs to the MLP are the projections of the data on the first
m principal components (the so-called PCA scores). The number of inputs m (PCA
dimensions) is then a variable to be optimized. To prevent overfitting, early stopping
or weight decay regularization can be used. Furthermore, the decomposition of the
global learning tasks in successive classification subtasks [16] (hierarchical
classification) has been addressed. First classification between the more distinct clusters
is performed, and then the finer differences are determined in subsequent steps. This is
particularly useful when dealing with a big number of classes and a small number of
data.

Advanced data analysis with feature selection (FS)
Selecting good feature (sensor) subsets can help both in the understanding of the

sensors themselves and in enhancing the data analysis (e.g. classification performance)
through a more stable data representation. In statistical pattern recognition the phenom-
enon of the “curse of dimensionality” has been often observed, where the sparseness of the
data in high dimensional spaces causes a bad classification performance. At the same
time, two trends in sensor systems are the increase of the sensor numbers and the extrac-
tion of complex patterns from each sensor. We gave a first demonstration of the usefulness
of FS for a hybrid e-nose [18].

 The particular application problem investigated here is the optimal coffee ripening
time. A dataset has been collected with the EOS835 EN from SACMI. We present here the
results for one classification problem out of four we tackled (each regarding a different set
of experimental conditions). In each case the classification is between four levels of post-
roasting coffee seasoning. Experimental details and PCA visualizations of the data can be
found elsewhere [19].

From each sensor response curve, we extracted five different features. Three are
standard features: the classical R/R0 (taking R as the minimum of the response curve dur-
ing the absorption) and the integral of the response curve, calculated during the absorption
(AIN) and the desorption step (DIN). We also used the approach of calculating the features
in the phase-space [20]. The phase-space is spanned by the response and its first time
derivative (the time variable is implicit in the trajectory described by the sensor). In this
space, we calculated the integral of the trajectory during the absorption and desorption
steps, named Absorption Phase Integral (APS) and Desorption Phase Integral (DPS) re-
spectively. In Figure 1 we show the PCA plot obtained from the complete dataset, i.e.
without selecting features.

To get a high classification performance and to evaluate the contribution of each
feature and sensor type we performed FS. The FS selection criterion is the cross validation
of the test set error for the 3 Nearest Neighbors classifier. We performed an exhaustive
search over all subsets constituted by 1, 2, 3, 4, 5 features out of 30. For the 5 features sets,
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this means evaluating 30 pick 5 equal 75900 subsets, which required 21h of computation
with a P4 processor.

Synthetically, the main result is that performance (as judged from both classification
error and from PCA appearance) is always significantly better for the best features than for
all 30 features. Moreover -for some of the 5 features types- performance with all 30 fea-
tures is worse than performance with just the 6 features of a single type.

In Figure 2 we summarize the performances of the best feature subsets over different
sets of features. The stars are the best classification ratios for FS over all 30 features. With
4 features we get the best result: almost 100%. The star symbols are always higher than the
other ones. The remaining symbols represent the best classification ratios for FS inside
each category of features (from the best single sensor to all 6 sensors). Inside each feature
category, maximal performance is reached with 2-4 features (i.e. sensors). This means that
FS is beneficial also if only one feature type is extracted.

Finally, the continuous line is the classification ratio for the 3NN over all features
(no selection): it is 25% worse than the ratio for the best 4-features set. It is also worse than
the performance obtained by selecting the best features from the ‘phase after’ and ‘integral
after’ (‘after’ means during the desorption phase, while ‘during’ corresponds to adsorp-
tion).

For this dataset the features extracted while the gas desorbs from the sensors are
better, while the standard R/R

0
 has a bad performance. Yet, considering also the other

three classification problems (not shown), results are not univocal regarding the best fea-
ture type. Still, for 3 out of 4 datasets the phase integral calculated on the desorption wins.
Also, features (phase and integral) calculated on the desorption seem to consistently give

Figure 1 PCA plot for all sensors. The four symbols refer to four coffee seasoning levels.
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higher performance than the corresponding features calculated during adsorption. The stand-
ard R/R0 stands in the lower part of the ranking.

Figure 2 Best classification results for different sets of features.
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Figure 3 PCA plot for the best 4 features subset
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Surprisingly, by investigating the composition of the best feature sets obtained from
all features, R/R

0
 plays an important role again. For example, the three highest scoring two

feature sets, contain a R/R
0
 feature. It seems that, while by themselves the R/R

0
 features

are not discriminative, they are complementary to the other features and therefore helpful
for increasing performance. The advantage given by FS can also be appreciated in this
case by comparing the PCA plots for all 30 features (Figure 1) and for the best 4 features
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(Figure 3). We see that Classes 2 and 3 are mixed in Figure 1, while they are separated in
Figure 3.

Conclusions
The E-Nose Pico finds its strength in the thin film semiconductor sensors and in the

data analysis software. We applied the EN to the monitoring of coffee seasoning, concen-
trating on the advantages given by selecting the best features extracted from the sensor
responses.

We showed that simply increasing the number of features doesn’t lower the per-
formance of a sensor system with respect to a single class of sensors/features, while a
properly chosen subset does. We conclude that FS is mandatory when harvesting many
features from the response curve and that it is better to use only one feature type if FS is
not going to be applied.

Furthermore, FS can lead to an understanding of the data by ranking the features
according to their contribution to classification. This means that, for our data, we can infer
which are the best sensors and the best feature extraction methodology.
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